
ABSTRACT: Palmitic acid hexadecylthioester and other long-
chain acyl thioesters have been prepared in high yield
(80–85%, purity >98%) by solvent-free lipase-catalyzed thioes-
terification of fatty acids with alkanethiols in vacuo. A lipase B
preparation from Candida antarctica was more effective than a
lipase preparation from Rhizomucor miehei and, particularly,
those from papaya latex and porcine pancreas. Lipase-catalyzed
transthioesterification of fatty acid methyl esters with alkanethi-
ols was less effective than thioesterification for the preparation
of acyl thioesters. However, in transthioesterification, a lipase
preparation from R. miehei was more effective than a lipase B
preparation from C. antarctica. Lipases from papaya latex and
porcine pancreas led to moderate conversions to acyl thioesters
in both thioesterification and transthioesterification reactions,
whereas only small proportions of thioesters were formed using
lipase from Rhizopus arrhizus. Lipases from Chromobacterium
viscosum and Candida rugosa were not effective at all.
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Thioesters are activated esters that are utilized as versatile in-
termediates in organic chemistry for the preparation of vari-
ous compounds, e.g., peptides, macrolide antibiotics, and
other pharmaceuticals (1–6). Acyl thioesters are active acyla-
tion intermediates in biochemical and bioorganic nucleophilic
reactions, having higher reactivity and selectivity than the
corresponding oxygen analogs (7–9). Most methods for the
preparation of acyl thioesters use expensive or highly toxic
reagents (3,4,10,11). These disadvantages led to the develop-
ment of lipase-catalyzed thioesterification and transthioester-
ification processes for the preparation of acyl thioesters. For
example, short-chain flavor thioesters and long-chain thio
wax esters were formed by lipase-catalyzed thioesterification
and transthioesterification, respectively, between alkanethiols
and carboxylic acids or carboxylic acid esters—usually in or-
ganic media with a molecular sieve as an acceptor for water

and short-chain alcohols (12–16). In this paper we describe a
solvent-free enzymatic method for the preparation of long-
chain thioesters by thioesterification and transthioesterifica-
tion of fatty acids (FA) and fatty acid methyl esters (FAME),
respectively, with long-chain thiols using immobilized lipases
as catalysts and evacuation for the removal of water and
methanol.

EXPERIMENTAL PROCEDURES

Materials. 1-Dodecanethiol, 1-tetradecanethiol, 1-octadec-
anethiol, lauric acid, palmitic acid, methyl palmitate, Carica
papaya latex, and Candida rugosa Type VII lipase (850,000
units/g) were obtained from Sigma-Aldrich-Fluka (Deisen-
hofen, Germany). 1-Hexadecanethiol was a product of TCI
(Tokyo, Japan). The granular papaya latex preparation was
ground in a mortar with pestle to a fine powder to pass through
a 0.8-mm mesh width sieve and was used as a source of lipase.
The immobilized lipase preparation from Rhizomucor miehei
(Lipozyme IM 20®; 23 Batch Interesterification units/g; 10%
w/w water) and lipase B preparation from C. antarctica
(Novozym 435®; 10,500 propyl laurate units/g; 2% w/w water)
were kindly provided by Novo Nordisk (Bagsvaerd, Denmark).
Lipases from Chromobacterium viscosum (144,000 units/g)
and porcine pancreas (4,500 units/g) were products of Biocata-
lysts (Pontypridd, Mid Glamorgan, United Kingdom). Lipase
from Rhizopus arrhizus (50,000 units/mL) was obtained from
Boehringer-Mannheim (Mannheim, Germany).

Lipase-catalyzed reactions. As a typical example, palmitic
acid (16:0-FA, 51.5 mg, 0.2 mmol), was esterified with 1-oc-
tadecanethiol (18:0-thiol, 172 mg, 0.6 mmol) in the presence
of 50 mg of one of the lipase preparations (50 µL suspension
in the case of lipase from R. arrhizus) by magnetic stirring in
a screw-capped tube in vacuo (20–50 mbar) at 60°C for vari-
ous periods with water-trapping in the gas-phase using KOH
pellets. Samples of the reaction products were withdrawn at
various intervals, taken up in isohexane and centrifuged to
separate the biocatalyst. An aliquot of the supernatant was an-
alyzed as described below.

Methyl palmitate (16:0-FAME, 54.1 mg, 0.2 mmol) was
interthioesterified with 1-octadecanethiol (172 mg, 0.6 mmol)
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under identical conditions as described above for the thioes-
terification reaction.

Enzyme units were calculated from the initial rates (4 h)
of thioesterification or transthioesterification of FA and
FAME, respectively, with 1-alkanethiols. One unit of enzyme
activity was defined as the amount of enzyme (in g) that pro-
duced 1 µmol of fatty acid alkyl thioester/min. 

Isolation and purification of long-chain acyl thioesters. As
a typical example, the products resulting from the reaction of
palmitic acid (51.3 mg, 0.2 mmol) with 1-hexadecanethiol
(155.1 mg, 0.6 mmol) using Novozym 435® (50 mg) at 60°C
and 50 mbar for 48 h were dissolved in 5 mL isohexane, cen-
trifuged, and the supernatant was applied to a silica gel 60 (E.
Merck, Darmstadt, Germany) column (20 × 0.5 cm, i.d.). The
column was eluted first with 20 mL isohexane/diethyl ether
(99:1, vol/vol) to remove 1-hexadecanethiol, then with 20 mL
isohexane/diethyl ether (95:5, vol/vol) to yield 80–85 mg
palmitic acid hexadecyl thioester, m.p. 56–57°C (from iso-
hexane), mass spectrometry [m/z (rel.%)]: 271 (13.4, [M −
C16H33]+); 257 (3.8, [C16H33S]+); 239 (59.9, [M − C16H33S]+);
57 (100).

Analytical methods. In thioesterification reactions, aliquots
of products were treated with a solution of diazomethane in
diethyl ether to convert the unreacted FA to methyl esters; the
resulting mixture of methyl esters, unreacted alkanethiols,
and acyl thioesters was analyzed by gas chromatography. In
transthioesterification reactions aliquots of products consist-
ing of methyl esters, unreacted alkanethiols, and acyl
thioesters were analyzed directly by gas chromatography. A
Hewlett-Packard (Böblingen, Germany) HP-5890 Series II
gas chromatograph equipped with a flame-ionization detector
was used. Separations were carried out on a 0.1-µm Quadrex
400-5HT (Quadrex Corp., New Haven, CT) fused-silica cap-
illary column, 25 m × 0.25 mm i.d., using hydrogen as the
carrier gas (column pressure 50 kPa), initially at 120°C for 2
min, followed by linear programming from 120 to 200°C at
5°C · min−1 and from 200 to 350°C at 20°C · min−1, finally at
350°C for 6 min. The split ratio was 1:10, the injector as well
as the flame-ionization detector temperature was 350°C.
Peaks in gas chromatograms were assigned by comparison of
their retention times with those of known standards. Peak
areas and percentages were calculated using Hewlett-Packard
3365 Series GC ChemStation software.

RESULTS 

The formation of long-chain acyl thioester by lipase-cat-
alyzed thioesterification of palmitic acid with 1-octadec-
anethiol over a period of 72 h is shown in Figure 1. In the
thioesterification reaction, a lipase B preparation from C.
antarctica (Novozym 435®) with an activity of 9.3 thioesteri-
fication units/g led to >98% conversion of palmitic acid. The
data presented in Figure 1 also show that a lipase B prepara-
tion from C. antarctica was superior to a lipase preparation
from R. miehei (8.8 thioesterification units/g) and, particu-
larly, to lipase preparations from papaya latex (0.7 thioesteri-

fication units/g) and porcine pancreas (0.3 thioesterification
units/g). Moreover, only small proportions, if any, of acyl
thioesters were formed using lipases from C. viscosum, R. ar-
rhizus, and C. rugosa (data not shown).

In a typical reaction of palmitic acid with 1-hexadec-
anethiol, catalyzed by Novozym 435®, the reaction products
were fractionated by column chromatography on silica gel, as
described in the Experimental Procedures section, to yield
palmitic acid hexadecyl thioester in a purity of 98% and an
isolated yield of 80–85% with respect to the amount of
palmitic acid used.

Figure 2 shows the formation of long-chain acyl thioester
by lipase-catalyzed transthioesterification of methyl palmi-
tate with 1-octadecanethiol. The data demonstrate that with
both Novozym 435® (6.5 transthioesterification units/g) and
Lipozyme IM 20® (7.0 transthioesterification units/g) biocat-
alysts distinctly lower amounts of acyl thioesters were formed
by transthioesterification than thioesterification (Figs. 1 and
2). Lipase preparations from papaya latex (1.3 transthioester-
ification units/g) and porcine pancreas lipase (1.3 transthioes-
terification units/g) catalyzed transthioesterification reactions
at similar rates, and both enzymes showed higher conversion
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FIG. 1. Time course of the formation of palmitic acid octadecyl thioester
by lipase-catalyzed thioesterification of palmitic acid with 1-octade-
canethiol in the presence of various lipases at 60°C in vacuo. Novozym
and Lipozyme (Bagsvaerd, Denmark); papaya latex as a source of lipase
(Sigma-Aldrich-Fluka, Deisenhofen, Germany); porcine pancreas lipase
(Biocatalysts, Pontypridd, Mid Glamorgan, United Kingdom).

FIG. 2. Time course of the formation of palmitic acid octadecyl thioester
by lipase-catalyzed transthioesterification of methyl palmitate with 1-
octadecanethiol in the presence of various lipases at 60°C in vacuo. For
lipase sources see Figure 1.



rates in transthioesterification than in thioesterification (Figs.
1 and 2).

Table 1 shows that conversions (determined by gas chro-
matography) of well over 90% of long-chain acyl thioesters are
obtained by thioesterification of lauric and palmitic acids with
various 1-alkanethiols, catalyzed by Novozym 435® (enzyme
activity: 9–13 thioesterification units/g enzyme) in vacuo.

DISCUSSION

As an extension of previous studies (15,16), the present work
reveals that long-chain acyl thioesters can be obtained almost
quantitatively by thioesterification of a FA with a 1-alkanethiol
or in high amounts by transthioesterification of a FAME with
an 1-alkanethiol, catalyzed by lipases, in vacuo in the absence
of an organic solvent. Our recent studies reported lipase-cat-
alyzed thioesterification and transthioesterification using mo-
lecular sieve as drying agent with or without organic solvents
(15,16). The molecular sieve (4Å) used in these experiments
ensured the removal of water in thioesterification and of
methanol in transthioesterification reactions (15,16).

By comparing the reactions in vacuo (Table 1, Figs. 1 and
2) with those in the presence of molecular sieve (16) or sol-
vents plus molecular sieve (15) one can see that conversions
of thioesters were doubled when the reactions were per-
formed without solvents. Similar conversions (>90%) were
observed when starting materials were reacted in the presence
of molecular sieve at normal pressure (16) or under vacuum
without molecular sieve (Table 1, Figs. 1 and 2). In reactions
in vacuo, no further chemicals are needed, which may be of
advantage particularly for industrial applications. To our
knowledge the vacuum conditions reported here were being
used for the first time in thioesterification and transthioesteri-
fication reactions with lipases. However, other lipase-cat-
alyzed esterifications and transesterifications in vacuo are
well known (e.g., 17–19).

To summarize, long-chain acyl thioesters (thio wax esters)
have been prepared in high conversion (up to >98%, isolated

yield 80–85%) by solvent-free esterification of FA with long-
chain 1-alkanethiols in vacuo, catalyzed by lipase prepara-
tions from C. antarctica B (Novozym 435®), R. miehei
(Lipozyme IM 20®), C. papaya latex, and porcine pancreas.
In thioesterification reaction Novozym 435® as a biocatalyst
was superior to lipase preparations from R. miehei (Lipozyme
IM 20®), papaya latex, and porcine pancreas. Lipase-cat-
alyzed solvent-free transthioesterification in vacuo of FAME
with 1-alkanethiols was less effective for the preparation of
acyl thioesters than thioesterification of fatty acids with 1-
alkanethiols. In transthioesterification Lipozyme IM 20® was
slightly more effective as biocatalyst than Novozym 435® as
well as papaya latex and porcine pancreas. Similar results
have been obtained for both the thioesterification of lauric and
palmitic acids with various 1-alkanethiols (Table 1) and the
transthioesterification of methyl laurate with tetradecanethiol
(data not shown).
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